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2. Introduction
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Ladar-based Discrimination of Grass

from Obstacles for Autonomous

Navigation

Autonomous navigation in vegetated terrain requires the ability

to discriminate obstacles from grass, a non-trivial problem when the senso-

rial world of the robot is based only on range information as provided, for

example, by a laser range�nder (ladar). We present a statistical analysis

of the range data produced by a single-axis ladar in di�erent situations,

including the case of an obstacle partially occluded by grass. Such analysis

inspired a simple classi�cation algorithm, which has been tested on real

range data acquired by JPL's urban robot.
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Autonomous vehicles have great promise for applications in the military, agri-

culture, space exploration, and other domains. Moreover, rapid progress in

miniaturization and improved cost-e�ectiveness of navigation sensors, cameras,

and computers is accelerating the maturation of robotic vehicles. However, a

key limitation remains for domains in which robots must navigate in tall grass,

small bushes, or forested areas, because existing perception systems cannot do

e�ective obstacle detection in these situations. Most obstacle detection sys-

tems to date rely exclusively on range data from ladar, stereo vision, radar, or

ultrasonic sensors to perceive scene geometry and assume implicitly that the

scene consists of relatively large, solid surfaces [7]. When driving in vegetated

terrain, the notion of \obstacle" needs to be revisited. For example, a small

bush can be considered an obstacle based solely on geometric speculation, al-

though it probably can be driven over without damaging the vehicle. Thus, for

e�cient navigation in vegetated terrain, a higher level of reasoning must inter-

vene, based on both the geometric description of the scene and the composition

of the terrain cover.

In this paper, we are interested in determining whether an \obstacle" is a

rock (non-traversable) or a patch of grass (traversable). Terrain cover classi�-

cation can be based on color features [1], but such an approach won't work at
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3.1. Case 1: Homogeneous grass �eld

3. Statistics of Range Data on Grass

This model is not entirely correct because it assumes that grass blades can intersect [5].

night. Visual texture is another promising approach, but it is computationally

expensive and the technology is not mature yet. In this work, we discuss a

simple approach based on the statistical analysis of the range data as provided

by a laser range�nder (ladar). Intuitively, range data on grass and bushes will

be spatially scattered, while range data on bare soil or rock will tend to be

more \regular" and lie on a relatively smooth surface.

In the following section we derive theoretical probability distributions for

range data from a single-axis ladar in vegetated terrain. We consider a number

of \canonical" situations, including the case of a �eld of randomly distributed

grass containing a partially occluded rock. The theoretical results of Section 3

are validated in Section 4, where we show histograms of real range data. We

also introduce a simple and fast algorithm for the classi�cation of grass versus

rocks based on statistical measures over moving windows. The range data used

in the experiments was collected by the urban robot developed by JPL as part of

the Tactical Mobile Robotics (TMR) Program funded by DARPA (see Figures

4,8). This robot is equipped with stereo cameras, an omnidirectional camera,

an uncooled thermal infrared camera, and a 2-axis scanning ladar (although the

data for this work has been acquired by rotation around the vertical axis only)

[2, 6]. Autonomous navigation capabilities to date include obstacle avoidance,

visual servoing to goals, and autonomous stair climbing.

The statistics of range measurements can provide us with precious information

about the terrain cover. We introduce here a model for the range distribution

which can be used to design a classi�er of grass versus other obstacles, as

discussed in Section 4. It is assumed here that the laser rotates around a

vertical axis, and that the laser beam width is in�nitesimal. We also assume

that the ladar always receives a return when the laser ray hits a surface, and

that the measurements are noiseless. These assumptions are discussed in more

detail in Section 3.4

In the next subsections, we will consider three \canonical" situations:

when the robot is in the middle of an homogeneous �eld of grass, when the

robot is placed at a certain distance from a patch of grass, and when a rock is

partly visible through the grass.

To model an homogeneous �eld of grass, we will assume that the blades of grass

have constant circular section of diameter , and that the centers of the grass

blades are distributed according to an isotropic Poisson point process in space

with intensity [4]. This means that within a unit area of soil we expect to

�nd blades . In the case of an in�nitesimal laser ray, one easily proves that

the probability density function (pdf) of the range is

( ) = ( ) (1)
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3.2. Case 2: Grassy patch seen from the distance

3.3. Case 3: Rock behind the grass

By identifying the skewness with the third-order moment of the distribution, we

adhere to the de�nition given in [8]. Note that other authors (e.g. [4]) de�ne the skewness

as the third-order moment divided by .

where ( ) is the Heavyside function. In other words, we expect the range

data on grass to behave as an exponential distribution with mean = 1 . A

similar exponential behavior was predicted and observed in the case of range

data measured in a forest [3], as a consequence of the random distribution of

tree trunks.

A synthetic example of grass distribution is shown in Figure 1. Each grass

blade has diameter equal to 20 mm, and there are on average =500 blades

per square meter. It is assumed that the ladar acquires data with an angular

period of 0 5 . The blades of grass that are hit by the laser ray are represented

with a red kernel. Figure 1 also shows the normalized histogram of the range

measured over 500 trials. An exponential density curve has been �tted to

the data and superimposed to the histogram in the �gure. Such best-�tting

exponential has mean equal to 0 098/m, which is very close to the expected

value of 0 1/m.

From the pdf of the range (1) we may compute its second-order moment

(variance, ) and its third-order moment (skewness , ), which will be used

in Section 4:

= = 1 ( ) = 2 = 2 ( ) (2)

The skewness measures the degree of symmetry of a distribution around its

mean. Positive (negative) values of the skewness indicate that the distribution

extends towards the right (left) tail. The case = 0 corresponds to a sym-

metric distribution, such as the normal. In the case under exam the skewness

is positive, meaning that the distribution is skewed to the right.

An instance of this case is shown in Figure 2 ( = 85 m , = 30 mm). The

robot is at a distance = 200 mm from the rectilinear edge of a patch of

grass. The distribution of the range data along a �xed line oriented at an angle

with respect to the normal to the patch edge is now an exponential shifted by

a value of cos( ). However, the pdf of the range computed over the whole

angular span (equal to 90 in this example) does not have an exponential shape.

Indeed, the normalized histogram shown in Figure 2 (computed over 500 trials)

shows a heavier tail than in the case of an exponential density.

Suppose the robot is looking at a patch of grass which contains a rock (or any

non-traversable object). Clearly, if the rock is right in front of the robot, the

distribution of the range concentrates around the actual distance of the rock.

If the rock is very far away from the robot, all the rays from the ladar are likely

to be stopped by the grass before reaching the rock surface. However, if the

rock is at an intermediate distance, it is quite possible that some rays from

the ladar reach the rock surface, while the other rays hit some blades of grass

on the way. This situation is shown in Figure 3, where the parameters of the



2

� �
�

�

� � �

�

�

�

�

�

� � �

� �

2

2

2

2

2

2

3

2
2

2

3

3

( )(1+ ( + ) 2)

�dT

�dT

�dT
�dT

�dT �dT �dT

�d r D a r D =
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grass distribution are = 300 m , = 10 mm (the rock surface is represented

by the blue circles.) To simplify the computation of the range distribution, we

will assume that all points of the rock surface are at the same distance from

the ladar (this hypothesis is clearly not veri�ed in Figure 3, where the rock

surface is at a slanted angle). In this case, the pdf of the range is simply an

exponential truncated at = , followed by a peak at = of area .

The larger the distance to the rock, the smaller the area of the peak, and

the further to the right its position. This expected behavior can be noted in

the histogram of Figure 3 (computed over 3000 trials within the angular sector

subtended by the rock surface). The histogram is clearly bimodal, although

the second peak spreads out due to the slant of the rock surface. The mean ,

variance and skewness of the range are easily computed from our model

distribution:

=
1

1 (3)

=
1

( )

2
+

( )
(4)

=
2

( )

3 6

( )

2

( )
(5)

By comparing (5) with (2), one maintains that the skewness in this case is

always smaller than in the case of homogeneous grass, and indeed it takes on

negative values for su�ciently small . In other words, the presence of the

peak centered at = makes the distribution more skewed to the left.

While the theoretical results derived in the previous subsections are useful to

understand the behavior of the range data, and indeed have inspired the simple

classi�cation algorithm of Section 4, we should comment on the shortcomings

of our analysis. Firstly, the assumption that the ladar always receives a return

when the laser ray hits a surface is not very realistic. For example, it is quite

possible that the ladar does not read a return when the ray hits the outer edge

of a grass blade. Secondly, the return is integrated over a non-in�nitesimal

time window while the ladar is revolving. This means that the measured range

actually represents the average value of the actual pro�le within a small angular

sector. The measured range is thus a \smoothed" version of the actual range

pro�le. Finally, a more realistic analysis would take into account the fact that

laser ray has a non-null divergence (e.g., the laser used in the experiments

has = 1 mr). It can be shown that in this case the distribution of the range

along a �xed direction can be modeled by the following form:

( ) = (1 + ) ( ) (6)

where is the distance to the edge of the grassy patch along the ray and =

2 tan( 2) . For small values of and , the distribution of the range data

does not di�er substantially from the in�nitesimal ray case. This is because

the ray will normally hit a blade of grass before \thickening". However, if the
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4. Experimental Results

patch of grass is far from the ladar (i.e., for large enough values of ), it

is seen from (6) that the e�ect of �nite ray size cannot be neglected. In this

case, the ray will have thickened noticeably before hitting a blade of grass.

Intuitively, this corresponds to using an in�nitesimal ray in a �eld of grass

where the density of the blades increases proportionally with the distance from

the ladar.

In this section we present some experiments on real range data, collected by

our urban robot at La Canada, near JPL, in environments that include grass

with some rocks and trees. The rotation rate of the ladar was set to 5Hz and

the angular sampling period to 0 7 .

Figure 4 shows the spatial distribution of range measurements with the

robot placed in front of a patch of grass. The grass is visible in the upper

half-plane; the dots in the lower plane correspond to soil, which was visible

because the rotation axis was not perfectly vertical. Two histograms of range

are presented in Figure 5, covering respectively a narrow and a large angular

sector of the grassy patch. As expected, the �rst histogram has a shape very

similar to the exponential curve of (1). The best-�tting exponential (super-

imposed on the histogram) has mean = 1 with =3.7/m. The second

histogram has a much heavier tail, as predicted by the discussion in Section

3.2. Note in passing that the histograms have been computed over a number

of revolutions while the robot stood still. A light breeze is su�cient to keep

the grass blades in constant shaking motion, enabling a good statistical sam-

pling. Another reason for scan-to-scan di�erences is that in each revolution the

measurements may not be taken at identical angular positions.

Figure 6 shows a situation with some grass and two rocks (one of which

partially occluded by grass). The histograms, computed within the angular

sector corresponding to three di�erent situations (grass, rock, rock behind the

grass), match the densities predicted in Section 3 rather well. In particular,

the histogram corresponding to the rock behind the grass is clearly bimodal

(see also Figure 8).

A classi�er of grass versus non-grass may be based on the statistical prop-

erties of the range discussed above. We implemented a very simple and fast

algorithm, based the local estimation of the variance and of the skewness of

the range distribution. A suitable threshold set on the variance may allow us

to classify rather robustly grass from an obstacle with an exposed smooth sur-

face. However, this technique will fail when the obstacle is partially occluded

by grass, because the range measurements will still have a high variability. To

deal with this situation, we may exploit the fact that the skewness is lower than

in the case of homogeneous grass (see Section 3.3). Thus, our improved statis-

tical test classi�es a point as grass if the local variance is above a threshold

and the local skewness is above a threshold .

An important issue here is the choice of the sample size for the computa-

tion of the variance. A small sample size causes the variance to vary widely

within the same terrain cover class. A large sample size covers a broad area,
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and therefore reduces the spatial resolution of the estimation. It was found by

extensive testing that a sample size of 9 for the variance and of 29 for the skew-

ness represents a good compromise between resolution and stability. Figure 9

shows the classi�cation results using our algorithm in two di�erent situations.

We presented an analysis of the statistics of range measurements in a vegetated

environment, and showed its use in the design of a classi�er of grass versus

obstacles. Our technique has given good results in real-world experiments,

even when obstacles were partially occluded by grass. Future work will extend

our analysis to more complex situations (involving, for example, discriminating
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Figure 1. Left: Simulated distribution of grass ( = 500m = 20mm). The

laser is placed in the middle; the acquisition angular period is 0 5 . The circles

�lled in red represents blades of grass hit by a laser ray. Right: Normalized

histogram of range over 500 trials.

Figure 2. Left: Simulated distribution of grass ( = 85 m = 30mm). The

laser is placed in the lower left corner, at a distance of 200 mm from the patch

of grass. Right: Normalized histogram of range over 500 trials.
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left corner. Right: Normalized histogram of range over 300 trials.

Figure 4. Spatial distribution of range measurements around the robot. In this

�gure as well as in the following ones, the axis ticks represent millimiters. The

cluster of points at the immediate left of the center is actually a part of the

robot within the �eld of view of the ladar.



1000 1500 2000 2500 3000 3500
0

0.5

1

1.5

2

2.5
x 10

-3

Range (mm)

p(
r)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

-3

Range (mm)

p(
r)

-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000

rock (behind grass)

grass

rock (exposed)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.2

0.4

0.6

0.8

1

1.2
x 10

-3

Range (mm)

p(
r)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Range (mm)

p(
r)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

-3

Range (mm)

p(
r)

�
� �

� � � �

�

� � � � �

Figure 5. Normalized histogram of range measured over 30 revolution at angles

between 60 and 120 (left) and between 5 and 140 (right) for the case of

Figure 4.

Figure 6. A situation with two rocks and grass.

Figure 7. Normalized histogram of range measured at angles between 30 and

30 (left), between 40 and 60 (center) and between 35 and 50 (right)

for the case of Figure 6.



-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000

rock (behind grass)

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

-3

Range (mm)

p(
r)

-5000

-4000

-3000

-2000

-1000

00

1000

2000

3000

4000

5000

-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000

-5000

-4000

-3000

-2000

-1000

00

1000

2000

3000

4000

5000

-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000

�

�

�
�

Figure 8. A situation with a rock behind the grass (left) and the normalized

histogram of range measured over 3 revolution at angles between 45 and

70 (right).

Figure 9. Classi�cation results using local measurements of range variance and

skewness for two di�erent instances. The red enlarged dots have been identi�ed

by the algorithms as non-grass.


